

Inhalte des Referates

Projekt BaseLink

- Konzept
- Planung & Contracting
- ► Gross-Wärmepumpen
- Tiefen-EWS-Technologie JANSEN hipress

Quellen Darstellungen: <u>baselink.com</u>, Primeo Energie, Schädle, Jansen

Vortragende

Co-Referenten

- Patrick Immler
 - Jansen AG, Leiter Technik Geothermie

- ▶ Lehre als Werkzeugmacher
- Dipl. Kunststoff-Techniker
- Seit über 18 Jahren in der Erdwärmebranche in verschiedenen leitenden Positionen bei Herstellern und Bohrunternehmen in Deutschland und der Schweiz
- Seit 01.01.2023 bei Jansen AG

Martin Dietler

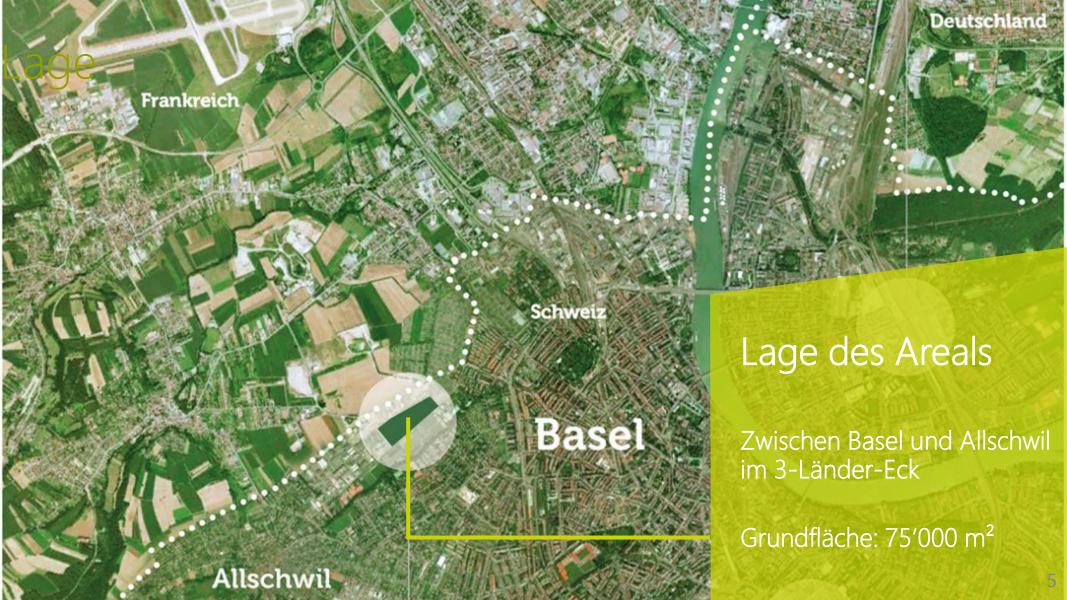
Primeo Energie, Abteilungsleiter
 Markt und Kunden

- Lehre als Heizungszeichner
- Ingenieurstudium an der FH Luzern
- Berufseinstieg als Werksingenieur in der pharmazeutischen Produktion
- Karriere als Projektleiter → Teamleiter
 → Abteilungsleiter Wärmeprojekte
 bei Primeo Energie (vormals EBM)
- Seit 01.01.2023 Abteilungsleiter Markt und Kunden im Wärmegeschäft

Co-Autoren

- Benjamin Pernter
 - Jansen AG, Produktmanager Geothermie

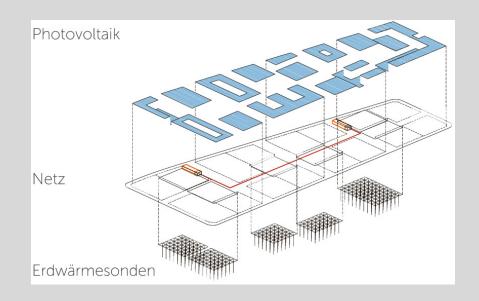
- Technische Begleitung des Projekts BaseLink bei Jansen
- Karl-Heinz Schädle
 - ► Inhaber & GF Schädle GmbH


- VP Geothermie Schweiz
- Planung des thermischen Geothermie-Speichers

BaseLink

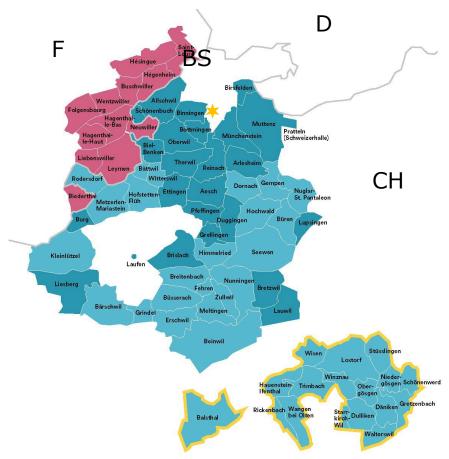
Zentrum für Forschung, Dienstleistung sowie gewerbliche Produktionsbetriebe

Areal


- ▶ 16 Baufelder in 4 Etappen
- Mehrere Bauherren, je nach Gebäude

Umweltfreundliches Gesamtkonzept

- Areal mit nutzer- und umweltfreundlichem Verkehrs- und Energiekonzept
 - Regenerative Energiequellen
 - Zentrale Wärme-, Kälte- und Stromversorgung
 - Photovoltaikanlagen
 - Hochleistungsglasfasernetz
- Gesamtes Areal CO₂-frei
- Realisierung durch ein Contracting-Verfahren der Primeo Energie


Geothermie auf dem Areal BaseLink

Bildquelle: Herzog & de Meuron

Primeo Energie / Elektra Birseck, Münchenstein (EBM)

EBM:

- Privatrechtliche Genossenschaft, gegründet 1897.
- Rund 57'000 Genossenschafter in 77 Gemeinden in den Kantonen Basel-Landschaft, Solothurn und im Elsass.
- 342 Delegierte / 9 Mitglieder des Verwaltungsrates
- Allein-Aktionärin der Primeo Energie Gruppe und Aktionärin der Alpiq (20% Aktienanteil).

Primeo Energie Gruppe:

- 650 Mitarbeitende an den Hauptstandorten Münchenstein, Saint-Louis, Olten, Zurich und Paris.
- Fokussiert auf die vier Geschäftsfelder Elektrizität,
 Netz, Wärme und Erneuerbare Energien.
- Hauptsitz Primeo Energie Münchenstein
- Gemeinden Kanton Basel-Landschaft, Primeo Energie
- Gemeinden Kanton Solothurn, Primeo Energie Gemeinden
- französisches Staatsgebiet, Primeo Energie Gemeinden
- Kanton Solothurn, Aare Versorgungs AG (AVAG)

Primeo Energie in Zahlen

Umsatz in Mio. Franken **Bilanzsumme** in Mio. Franken

Eigenkapital in Prozent

Gewinn in Mio. Franken **Netzgebiet Anzahl Gemeinden**

2282

2895

51

28

77

Strom- und Gasgeschäft in Mio. Kilowattstunden

15543 223

Wärmeverhünde Anzahl Anlagen

Erneuerbare Energie in Mio. Kilowattstunden

1650

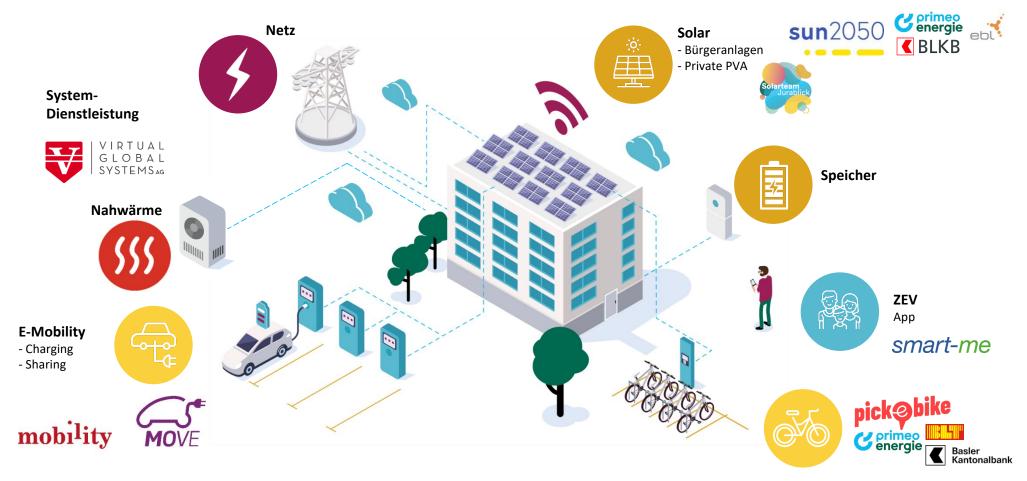
Mitarbeitende **Anzahl Angestellte**

650

Genossenschafter Anzahl Personen

57271

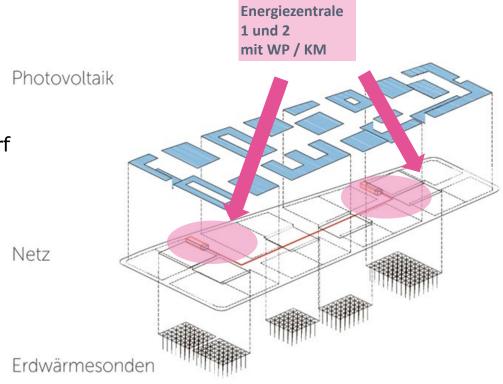
Spezialist in vier Segmenten



Smarte Services und Partnerschaften

Planung - Grundlagen

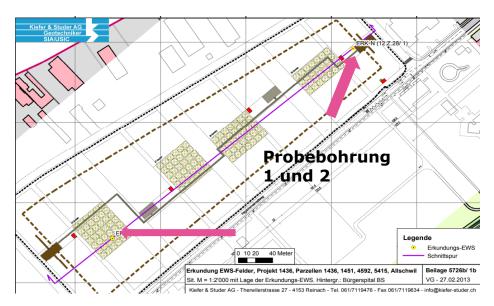
Auslegungsdaten / Energie

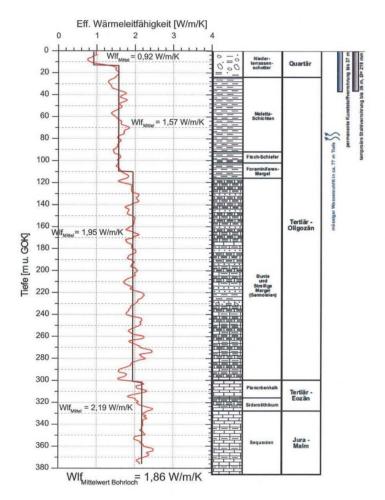

- Nutzung / Bedarf bei Projektierung unklar
- Keine Angaben zu Wärme und Kältebedarf
- Flexibler Ausbau in 2 Energiezentralen
- Modularer Aufbau mit bis zu 3 Modulen je Energiezentrale

Aktuell (2022)

Wärme 3'255 kW Kälte 4'790 kW

Endausbau prognostiziert


Wärme 5'500 kW Kälte 7'600 kW



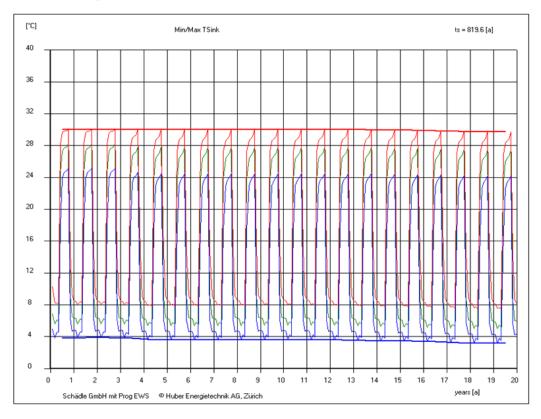
Erkundung Untergrund

Probebohrungen (2 Stück) Aufbau des Untergrundes Ermittlung der Bodenkennwerte mit TRT

- Thermischer Gradient / Wärmeleitfähigkeit
- Wärmestromdichte / Bohrlochwiderstand

Wärmeleitfähigkeit des Untergrunds

Auslegung Erdsondenfeld


Ausgangsdaten der Simulation

- Ausgangsdaten "Endausbau BaseLink"
- CO₂-freie Wärme- und Kälteerzeugung
- Leistungsdaten:

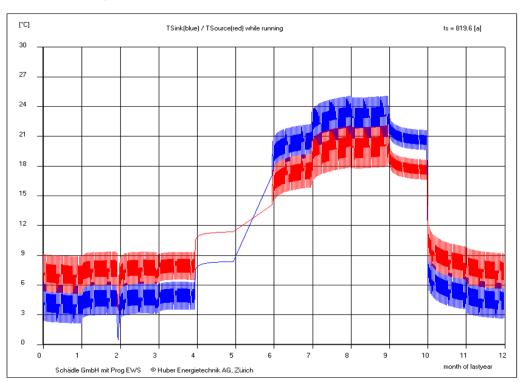
Wärme 5.5 MW Kälte 7.6 MW

- Nutzungsdauer > 50 Jahre
- Frostfreier Betrieb (ohne Glykol)
- Betrieb als "saisonaler Speicher" (Thermischer Akku)

Temperaturverlauf EWS-Feld über 20 Jahre

Auslegung Erdsondenfeld

Thermische Simulation


Grundlage: SIA 384/6

Programm: EWS (Huber Energietechnik)

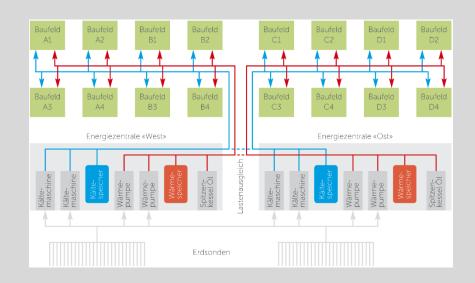
Berechnung als 1 Feld 225 EWS mit 280m Bohrlänge total: 63'000 m

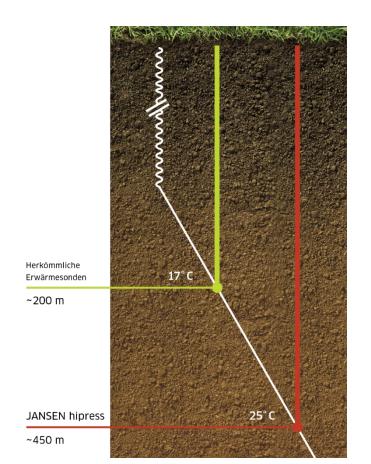
Stabile Nutzungsdauer > 50 Jahre Min. Temperatur 3-6 °C Max. Temperatur < 32 °C

Temperaturverlauf EWS-Feld im Jahr 20

Gross-Wärmepumpen

- 7.6 MW Wärme und Kälte
- Energiebedarf ca. 5-6 GWh/a
- 3-6 WP, Wettstein, NH3 (Ammoniak)
- Die überschüssige Wärme des Sommers wird in der thermischen Batterie "Erde" gespeichert, um sie im Winter wieder zum Heizen einzusetzen.





Sondenfeld: thermische "Batterie"

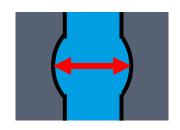
- 2 unterirdische Energiezentralen. Jede Zentrale verfügt über separate Wärme- und Kälteerzeuger. Quelle für beide Energien bilden die Erdsondenfelder. Der Untergrund des Areals funktioniert somit als riesige thermische Batterie.
- Insgesamt rund 270 Sonden (à 290m) (bisher; Q3 2019 – Q1 2022)
- 9.9 km Verteilleitungen
- 9 Verteilerschächte
- Eines der leistungsstärksten EWS-Felder Europas.
- Das weltweit grösste völlig diffusionsdichte EWS-Feld.

Steigende Urbanisierung – konzentrierter Energiebedarf zum Glück ist die Erde ein gewaltiger Energiespeicher ...

... und mit jedem Meter steigt die Temperatur.

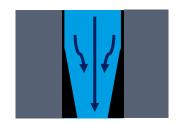
Somit auch die verfügbare Energie

$$Q = m c \Delta T$$


▶ Je tiefer desto grösser auch das erschlossene Energiereservoir (Sondenlänge → Erdvolumen)

$$Q = m c \Delta T$$

- Verbesserung der Effizienz der Wärmepumpenanlage
- Thermischer Speicher für höhere Temperaturen
- Es steigen aber auch die Anforderungen ans verwendete Material...


Anforderungen an tiefe Erdwärmesonden

Druckbeständigkeit

- Alle 10 Meter steigt der Innendruck einer Wassersäule um 1 bar
 - ▶ 350 Meter = 35 bar
- ▶ Je nach geologischer Situation kann nicht immer davon ausgegangen werden, dass die Hinterfüllung des Bohrloches bzw. das Erdreich diesen Druck auffangen kann.
- ► Tiefe Erdwärmesonden müssen deshalb eine hohe eigene & dauerhafte Innendruckbeständigkeit aufweisen.
- Und das auch bei höheren Temperaturen

Hydraulik

- Lange EWS haben einen hohen hydraulischen Widerstand (Druckverlust).
- Zugleich: Um die hohe Wärmeleistung aus tiefen Sonden zu transportieren, muss mehr Wärmeträger umgewälzt werden.
- Tiefe Erdwärmesonden müssen deshalb einen großen Innen-Querschnitt aufweisen, damit die Umwälzpumpe nicht zu viel Strom benötigt.
- Auf konische Verengungen soll möglichst verzichtet werden.

Die JANSEN hipress Tiefen-Erdwärmesonde

Um beide Anforderungen zu erfüllen, hat JANSEN ein Sondenrohr aus mehreren Schichten entwickelt:

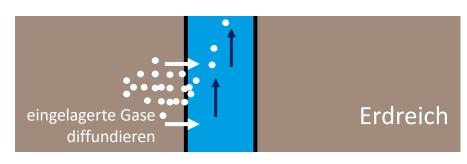
Rohraufbau aus PE100RC / Metall / PE100RC

Rohrdimension: 42 x 3.5 mm

 Die Rohre sind ein wenig grösser als bei herkömmlichen Sonden.

▶ Dank Metallschicht geringe Wandstärke nötig → grosser Innen-Ø

Die Rohre sind zylindrisch, haben also von oben bis unten den gleich grossen Durchgang von 35 mm.


▶ 35 bar, 50 Jahre, 20°C

Weitere Vorteile dank zylindrischem Metallkern:

→ Diffusionsdichtigkeit

Was ist Gas-Diffusion?

- Gasvorkommen im Untergrund hauptsächlich: Erdgas/Methangas, Kohlendioxid, Luft/Sauerstoff
- Bei diesem Phänomen durchwandern Gasmoleküle eine geschlossene Rohrwandung und führen zu Anlageproblemen.

Problem:

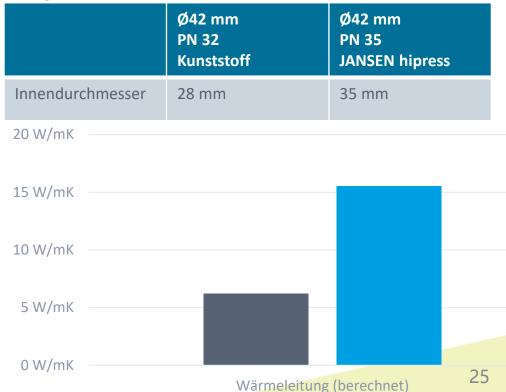
 Kunststoffrohre sind <u>nicht</u> diffusionsdicht gegen diese Gase.

Lösung:

Ausschliesslich eine Zwischenschicht z.B. aus Metall, wie bei der JANSEN hipress gewährleistet 100% Diffusionsdichtigkeit.

Aufbau der JANSEN hipress

- Das hipress Hochdruck-Sondenrohr ist werkseitig mit dem Sondenfuss verschweisst.
- Dafür wird ein eigens entwickeltes doppeltes Muffe-Dorn-Schweissverfahren für sichere Schweissung eingesetzt
- Der Sondenfuss ist zusätzlich in ein schützendes Metall-Case eingepackt
- Durchgehend von Fuss bis Kopf mit 42-mm-Hochdruckrohr, absolut diffusionsdicht! Verlängern der Mehrschichtrohre durch geschultes Personal.


Weitere Vorteile dank zylindrischem Metallkern

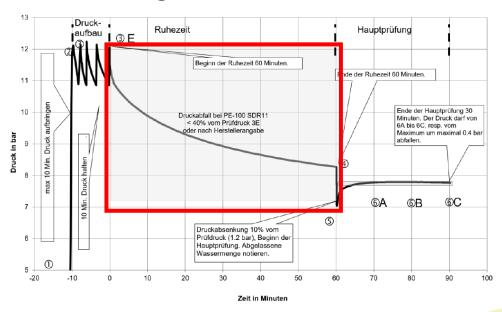
→ Höchster Wärmedurchgang

Technik

- Der Metallkern hat eine hohe Wärmeleitfähigkeit.
- Der gleichbleibend schlanke Rohrwandaufbau minimiert den Wärmewiderstand der Sonde.
- ▶ Beides zusammen ergibt besten
 Wärmedurchgang bzw. Wärmeaustausch
 (≠ "Entzugsleistung")
- ▶ Der höhere Wärmedurchgang kann in einer thermischen Simulation (zB. EWS oder EED) berücksichtigt werden.
- Häufig können dadurch Bohrmeter reduziert werden.

Vergleich

Weitere Vorteile dank zylindrischem Metallkern


→ Druckprüfung Schweiz (SIA384/6-konform)

Technik

- Bei Druckprüfungen von Erdwärmesonden nach SIA 384/6 muss der Prüfdruck so gewählt werden, dass auch während der Phase, in der der Druck langsam fällt, immer ein Überdruck am Sondenfuss gewährleistet ist.
- Das hochdruckbeständige Mehrschichtrohr weist eine sehr geringe Ausdehnung auf. Aus diesem Grund fällt der Druck während der Ruhezeit nur sehr minim ab.
- Dank diesem Vorteil dürfen JANSEN hipress Erdwärmesonden in der Praxis mit niedrigeren Drücken geprüft werden.

Ablauf einer Druckprüfung

(in Anlehnung an DIN EN 805)

Weitere Vorteile dank zylindrischem Metallkern

→ Dickere Schutzschicht

Höchste Qualität

- Metallschicht ist in eine Haft- & Versiegelungs-schicht umhüllt...
- ... sowie durch eine äussere PE100-RC-Ummantelung mit einer Wanddicke von >1.5mm dauerhaft eingebettet und geschützt.

Vergleich

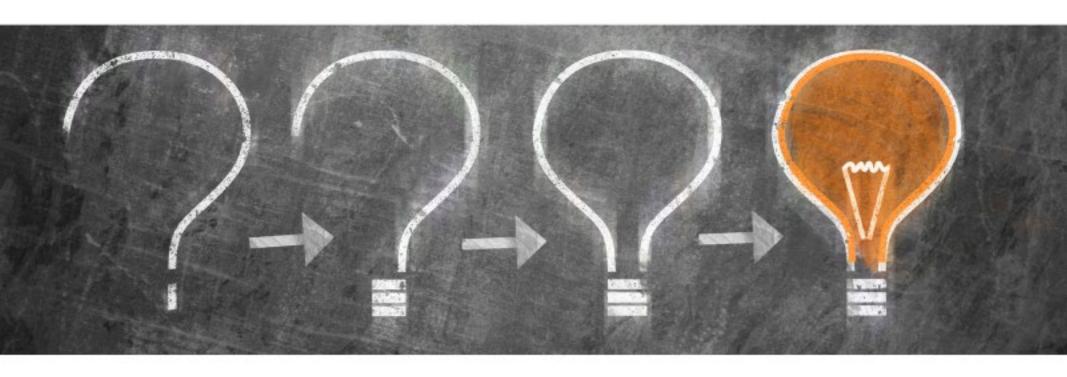
- Bei Vollkunststoff-Erdwärmesonde dürfen Kratzer nur bis zu einer Tiefe von max. 10% der Wanddicke betragen. Falls tiefer, dann sind solche EWS nicht mehr dauerhaft druckbeständig und dürfen aus diesem Grund nicht mehr eingesetzt werden.
- 40 x 4.5 mm PN20-EWS
 - Maximale Kratztiefe: 0.45 mm
 - Schutzschicht der hipress mehr als 3 Mal so dick!

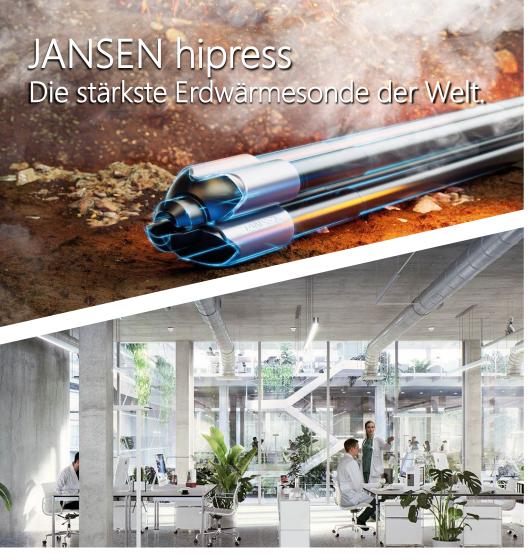
Bohrungen Feld D. Im Hintergrund werden die Parkhäuser auf Feld A errichtet, die EWS befinden sich bereits darunter.

Die Bohrarbeiten folgen einem definierten Ablaufplan. Die Baufelder, Etappen und Gewerke müssen exakt koordiniert werden.

Alle horizontalen Anbinde-Leitungen wurden ebenfalls mit diffusionsdichten Rohrleitungen zu den Verteilerschächten und weiter in die Technikzentralen verlegt.

In den ca. 2.5 Jahren wurden insgesamt rund 9.9 Kilometer Zuleitungsrohre verlegt.


BaseLink


Bautafel

- Grund-Eigentümer: Bürgerspital Basel
- ► Bauherr Energiesysteme & Contractor (Planung, Finanzierung, Bau, Betrieb) und Energielieferant (Wärme, Kälte, Strom): Primeo Energie
- Baufeld-Investoren: Swiss TPH,
 Senn Gruppe St. Gallen,
 ina invest Holding AG, JP Bachgraben AG
- ► Erdwärme-Planung: **K.-H. Schädle**
- ► Bohrungen: **Barmettler Erdenergie**

Fragen?

Jansen AG, Industriestrasse 34, 9463 Oberriet (Schweiz), Tel. +41 71 763 91 11, www.jansen.com